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Iron regulates glucose homeostasis in liver and muscle
via AMP-activated protein kinase in mice
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ABSTRACT Excess iron is associated with hepatic
damage and diabetes in humans, although the detailed
molecular mechanisms are not known. To investigate
how iron regulates glucose homeostasis, we fed
C57BL/6J male mice with high-iron (HI) diets (2 or 20
g Fe/kg chow). Mice fed an HI diet exhibited elevated
AMP-activated protein kinase (AMPK) activity and im-
paired insulin signaling in skeletal muscle and liver.
Consistent with the increased AMPK activity, glucose
uptake was enhanced in mice fed an HI diet. The
effects of improved glucose tolerance induced by HI
feeding were abolished in transgenic mice with expres-
sion of muscle specific dominant-negative AMPK. Glu-
cose output was suppressed in the liver of wild-type
mice fed an HI diet, due to decreased expression of
gluconeogenic genes and decreased substrate (lactate)
from peripheral glycolysis. Iron activated AMPK by
increasing deacetylase and decreasing LKB1 acetyla-
tion, in turn stimulating the phosphorylation of LKB1
and AMPK. The effects of HI diet were abrogated by
treatment of the mice with N-acetyl cysteine, suggesting
a redox-dependent mechanism for increasing deacety-
lase activity. In addition, tissue from iron-fed mice
exhibited an elevated AMP/ATP ratio, further contrib-
uting to AMPK activation. In summary, a diet high in
iron improves glucose tolerance by activating AMPK
through mechanisms that include deacetylation.—
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Iron plays a critical role in numerous biological
pathways. It is a key factor in the reduction-oxidation
(redox) reactions of oxidative phosphorylation in the
respiratory chain and in the binding of oxygen to
hemoglobin and myoglobin. The biological signifi-
cance of iron largely depends on its transition ability,
which, in biological systems, often involves the 1-elec-
tron redox reactions between its ferric (3�) and fer-
rous (2�) forms. In addition to its beneficial proper-
ties, free reduced iron is also toxic because of its
participation in Fenton redox chemistry: Reduced iron
reacts with hydrogen peroxide (H2O2) or lipid perox-
ides to produce highly reactive radicals that can dam-
age lipids, proteins, and nucleic acids.

A large body of evidence demonstrates that iron
overload is associated with development of cirrhosis
and diabetes in humans (1–5), although the molecular
mechanisms by which iron affects intracellular signal-
ing and homeostatic systems are not fully understood.
Many studies of iron-associated cirrhosis and diabetes
have focused on hereditary hemochromatosis (HH), a
genetic disease characterized by iron overload of many
tissues (6). The majority of patients with HH have
mutations in the HFE gene (7). Recent studies have
reported that the prevalence of diabetes in adults with
HH is 13–23% and that of impaired glucose tolerance is
15–30%, which represents a 2- to 4-fold increase over a
comparable reference population of Northern Euro-
pean descent (5, 8). Mice with targeted deletion of the
Hfe gene (Hfe�/�) recapitulate the biochemical abnor-
malities and histopathology of human HH (9). Insulin
secretion, for example, is decreased both in Hfe�/�
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mice (10) and in human HH subjects (5). Increased
gluconeogenesis and metabolic inflexibility in Hfe�/�

mice also contribute to the risk of diabetes (3). These
defects, however, are well compensated in Hfe�/� mice,
as evidenced by improved rather than impaired glucose
tolerance (11).

We have shown previously that AMP-activated pro-
tein kinase (AMPK) signaling was activated in Hfe�/�

mice (11). AMPK controls energy balance at the cellu-
lar and organismal levels (12). AMPK is a sensor of
cellular energy status and is activated by an elevated
ratio of AMP or ADP to ATP (13). A large variety of
hormonal signals and metabolic stresses, such as glu-
cose deprivation, ischemia, hypoxia, oxidative stress,
and hyperosmotic stress, activate AMPK, although not
all of these signal through an increased cellular AMP:
ATP and/or ADP:ATP ratio (12, 14). Activated AMPK
stimulates glucose uptake and fatty acid oxidation in
peripheral tissues and suppresses gluconeogenesis in
liver, pathways that play important roles in the pathogen-
esis and treatment of diabetes (15).

In our previous study of AMPK signaling in Hfe�/�

mice (11), the causality between the effects of iron and
AMPK were not established, nor were the pathways fully
explicated that linked those effects to changes in me-
tabolism. Furthermore, important differences are ap-
parent in the distributions of tissue iron in HH com-
pared to dietary iron overload (16) and in the
phenotypes resulting from these two sources of iron
overload (17). Because dietary iron overload is a more
important risk factor for diabetes in the general popu-
lation than HH, we therefore also sought to determine
whether the same effects of iron as were observed in
HH would be seen in mice fed high-iron (HI) diets.
Here we show that iron affects glucose tolerance in
mice through its activation of AMPK in liver and muscle
through mechanisms that include LKB1 deacetylation.

MATERIALS AND METHODS

Experimental animals

C57/Bl6J wild-type (WT) mice (3 mo old) were fed a normal
chow (NC) diet or an HI diet for 2 mo. Normal chow (Harlan
Teklad TD-8656; Harlan Bioproducts, Indianapolis, IN, USA)
contains 4.5% of calories as fat and 0.5 g/kg of carbonyl iron.
The moderately high iron (MHI) and HI diets contain 4.5%
of calories as fat and either 2 or 20 g/kg of carbonyl iron. An
additional group of mice fed a low-iron (LI) diet (4–6 mg/kg
chow) were used in the stable isotope studies. Mice with
muscle-specific expression of a dominant-negative AMPK
were kindly provided by Morris Birnbaum (University of
Pennsylvania, Philadelphia, PA, USA). Procedures were ap-
proved by the Institutional Animal Care and Use Committee
of the University of Utah.

Quantification of transcript levels by RT-PCR

Quantitative RT-PCR was performed with a Light Cycler
(Roche Diagnostics, Basel, Switzerland) as described previ-
ously (11). The following primers were used (designed using

Primer3 software; http://www.simgene.com): phosphoenol-
pyruvate carboxykinase (Pepck), 5=-TTGGAGAGAATGCT-
CGTGTG and 5=-TGGAGAACAGCTGACTGGTG; glucose-
6-phosphatase (G6Pase), 5=-AGGAAGGATGGAGGAAGGAA
and 5=-TGGAACCAGATGGGAAAGAG; transferrin receptor 1
(Tfrc), 5=-CAGTCCAGCTGGCAAAGATT and 5=-GTCCAGT-
GTGGGAACAGGTC; and ribosomal protein L13a (Rpl13a),
5=-GGAGAAACGGAAGGAAAAGG and 5=-ACAGGAGCAGT-
GCCTAAGGA. Messenger RNA levels of specific genes were
normalized to Rpl13a levels for the same sample. Rp113a
normalized to the cDNA template amount did not show any
variation with chow iron content.

Tissue nonheme iron determination

Tissue nonheme iron was quantified as described previously
(18). Briefly, after digestion in trichloroacetic acid at 65°C,
tissue extracts were added to the chromogen reagent contain-
ing bathophenanthroline sulfonate. Optical density was read
at 535 nm and compared to iron standards.

Ex vivo glucose uptake into isolated soleus muscle

2-Deoxy-d-glucose uptake was measured as described previ-
ously (19).

Glucose and pyruvate tolerance testing

After 6 h of food withdrawal, mice were injected intraperito-
neally with 1 mg/g body weight of glucose in 0.9% saline.
Glucose levels were measured from tail vein blood with a
glucometer (Elite; Bayer Corp., Tarrytown, NY, USA) at 0, 5,
15, 30, 60, and 120 min. Extra tail blood (30 �l) was collected
at 0 and 30 min for insulin measurement. For pyruvate
tolerance testing, after overnight food withdrawal, blood
glucose was measured with a glucometer before and after
intraperitoneal injection of sodium pyruvate (2 mg/g body
weight) at 0, 5, 15, 30, 60, and 120 min.

Stable isotope tracer studies

Stable isotope studies were performed as described previ-
ously (11).

Deacetylase activity

Tissue deacetylase activity was measured in nuclear extracts
using an assay kit from Enzo Life Sciences (Farmingdale, NY,
USA).

Measurement of AMP and ATP

Approximately 20 mg of frozen tissue was transferred to
chilled (�20°C) bead mill tubes containing 1.4-mm ceramic
beads. Cold (�20°C) 90% methanol (500 �l) containing the
internal standard NAD (1 mg/ml) was added, and the tubes
were placed into a Omni BeadRuptor 24 (Omni Interna-
tional, Kennesaw, GA, USA) and homogenized at 6.5 m/s2 for
30 s. These tubes were then incubated for 60 min at �20°C
and centrifuged (4°C) for 10 min at 20,000 g to precipitate
the proteins. The supernatant was reserved, and a second
extraction step was performed in the same manner as the first
but with 60% methanol (�20°C). The supernatants were
combined and vacuum dried.

Two Shimadzu LC10AD VP pumps and a CTO-10AS
column oven (Shimadzu Corp., Kyoto, Japan) were used
for HPLC separation. Detection was accomplished using a
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PE Sciex 365 triple-quadrupole mass spectrometer (Perkin
Elmer Sciex, Framingham, MA, USA) modified with an
Ionics EP10� source (Ionics, Bolton, ON, Canada). Prior
to LC-MS analysis to each dried sample was added 48 �l of
10 mM sodium phosphate buffer (pH 7.0) followed by 2 �l
of 2-vinylpyridine. The sample was allowed to incubate at
room temperature for 30 min, followed by the addition of
50 �l of 20 mM ammonium formate buffer (pH 9.2)
containing 7.5 mM N-butyl amine. After centrifuging at
20,000 g for 5 min, 20 �L of each sample was injected onto
a Phenomenex Gemini-NX C18 (150�3mm; 3 �m particle
size, 110A pore size; Phenomenex, Torrance, CA, USA)
fitted with a Phenomenex security guard precolumn. For
HPLC separation, solvent A contained 20 mM ammonium
formate and 7.5 mM N-dibutylamine in ultrapure water,
and solvent B contained 7.5 mM N-dibutlyamine in MS-
grade methanol. The initial column conditions were 5% B
for 3 min, followed by a gradient elution to 90% B over 20
min. This was held for 1 min, then brought back to 5% B
over 2 min. The column was then equilibrated for an
additional 10 min. Data were recorded using Analyst 1.4.2
software (Sciex) with final peak heights recorded in Excel
(Microsoft, Redmond, WA, USA). Data were normalized to
weight and internal standard.

Tissue culture

Mouse C2C12 myoblast cells were grown in MEM� (Invitro-
gen, Carlsbad, CA, USA) plus 10% fetal bovine serum and 1%
penicillin/streptomycin/glutamine. Myoblast differentiation
was induced by 2% heat-inactivated horse serum at �70%
confluence. The induction medium was changed every other
day for 4 consecutive days. Differentiated C2C12 myotube
cells were treated overnight with various concentrations of
ferrous sulfate. After 2 h incubation, cells were washed with
PBS and harvested.

Western blotting

Age-matched (5 mo) male mice were euthanized. Hindlimb
muscle and liver were collected, and tissue homogenates were
prepared for Western blot analysis. Levels of total and/or
phosphorylated proteins were detected by immunoblotting
using the following antibodies: acetyl-CoA carboxylase (ACC;
Ser79; Cell Signaling Technology, Danvers, MA, USA), AMPK
(Thr172; Cell Signaling Technology), ferritin (Abcam, Cam-
bridge, MA, USA), p53-Lys382 (Cell Signaling Technology),
Akt (Cell Signaling Technology), and IRS2 (Abcam). Signals
quantified by densitometry were normalized to glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) levels (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) or, in the case of
pAMPK, to total AMPK protein.

Statistical procedures

Descriptive statistics are presented as averages � sem. A
2-tailed Student’s t test was used to compare the differences
between groups.

RESULTS

AMPK is activated by excess iron in muscle

We first determined whether skeletal muscle of mice
fed an HI diet (20 g Fe/kg) accumulated excess iron.
Ferritin, a marker for tissue iron stores, was increased

2.1-fold in skeletal muscle from mice fed an HI diet
compared to control mice fed an NC diet (500 mg
Fe/kg; NC�0.48�0.16, HI�0.98�0.11 arbitrary den-
sity units, n�4/group, P	0.05; Fig. 1A). The Western
blots were normalized to GAPDH, and although iron
deficiency up-regulates that protein, iron excess has been
shown to have no effect on GAPDH expression (20).
Consistent with that finding, we saw no systematic variation
of GAPDH mRNA levels in our Western blots (see figures),
whose gels were also normalized by equal protein loading.

Ferritin represents a sequestered pool of iron with
very little turnover, so to verify that iron fluxes remain
high in muscle from mice fed the HI diet, we also
measured transcript levels of the transferrin receptor
Tfrc. Tfrc mRNA contains iron-responsive elements
(IREs) in its 3= untranslated region that result in
decreased Tfrc mRNA levels as intracellular bioavailable
iron levels increase (21). Tfrc transcript levels decreased
by 47% in muscle from mice fed the HI diet (P 	 0.001;
Fig. 1B). Finally, we directly assessed nonheme iron levels
in muscle, and they were increased by 22% in skeletal
muscle from mice fed the HI chow (P	0.05; Fig. 1C).

The phosphorylated form of AMPK was increased
2.7-fold in muscle from mice fed the HI diet (20 g
Fe/kg; NC�4.06�0.33, HI�10.80�1.36 arbitrary den-
sity units, n�4/group, P	0.01; Fig. 1D). We confirmed
activation of AMPK by examining phosphorylation of
an AMPK downstream target, ACC. ACC also showed a
3.1-fold increase in phosphorylation in muscle
(pAMPK: NC�4.1�0.6, HI�10.8�1.4 arbitrary density
units, P	0.01; pACC: NC�5.0�0.5, HI�15.9�3.0 arbi-
trary density units, P�0.02; n�3–4/group; Fig. 1D).
More modest elevations of dietary iron (2g Fe/kg,
compared to NC, 500 mg Fe/kg) could also activate
AMPK. The phosphorylated forms of AMPK and ACC
were increased by 1.8- and 5.4-fold, respectively, in
skeletal muscle from mice fed the MHI diet (2 g Fe/kg,
P	0.05; Supplemental Fig. S1).

To further demonstrate that activation of AMPK
was induced directly by iron rather than hormonal or
indirect metabolic effects of iron, cultured and dif-
ferentiated C2C12 myotubes were treated with differ-
ent concentrations of iron, and phosphorylation of
AMPK was examined by Western blotting. At 1 �M
FeSO4, levels of pAMPK and pACC were increased by
1.25- and 3.0-fold, respectively, compared to C2C12
myotubes cultured in iron-free MEM� (pAMPK: iron-
free�8.0�0.5, 1 �M FeSO4�10.0�0.4 arbitrary den-
sity units, P	0.05; pACC: iron-free�9.8�1.5, 1 �M
FeSO4�29.8�9.4 arbitrary density units, P�0.02; Fig.
1E). Dose-response analysis revealed no significant
stimulation at 100 nM FeSO4 and maximal stimula-
tion at 1 �M FeSO4 (Fig. 1F). A time-course study
revealed no increase of AMPK at 1 h, but near
maximal stimulation at 4 h that was maintained
through 12 h (not shown). We determined nonheme
iron levels in the cells, and they were increased
3.9-fold in the iron-treated cells (1.38�0.10 vs.
0.35�0.05 arbitrary units normalized to cell number,
n�4/group, P�0.0001).
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Glucose uptake is increased despite decreased insulin
signaling in muscle of mice fed an HI diet

Isolated soleus muscles from mice fed the HI diet
exhibited a significant increase in 2-deoxyglucose up-
take after insulin stimulation compared to control mice
fed the NC diet (NC�80.2�6.0, HI�90.5�2.3 cpm/
mg, P	0.05; Fig. 1G). The augmentation of glucose
uptake was not explained by increased insulin signal-
ing; rather, phosphorylation of AKT and its downstream
target IRS2 were decreased by 60% (NC�0.52�0.11,
HI�0.21�0.05 arbitrary density units, n�4–5/group,
P	0.05) and 53% (NC�0.69�0.16, HI�0.32�0.15 arbi-

trary density units, n�4/group, P�0.16), respectively, in
skeletal muscle of mice fed the HI diet compared to
control mice fed the NC diet (Fig. 1H).

AMPK mediates the effects of iron on glucose
homeostasis in vivo

In order to prove that AMPK activation mediates iron-
regulated glucose homeostasis in vivo, we fed the HI
diet (20 g Fe/kg) to mice expressing a dominant-
negative AMPK (AMPK-DN) in skeletal muscle. WT
mice fed the HI diet for 8 wk exhibited a 51% decrease
in the incremental area under the curve for glucose
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determined in skeletal muscle of mice fed NC or HI diets (n�18/group). *P 	 0.05. D) Skeletal muscle from WT mice fed NC
or HI diets were analyzed by Western blotting for activated pAMPK, total AMPK, pACC, and GAPDH (n�3–4; P	0.01 for
pAMPK, P�0.02 for pACC). E) C2C12 cells were differentiated into myoblasts and cultured in iron-free MEM� (n�3, P	0.05).
Extracts of C2C12 cells grown in different iron concentrations overnight were prepared for Western blot analysis of pAMPK,
total AMPK, pACC, and GAPDH. F) Dose response of pAMPK as a function of medium iron concentration. Cells were treated
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and area under the curve (AUC) for glucose was calculated (n�11–12, P�0.89 for AMPK-DN mice). *P 	 0.05.
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(AUCG) after intraperitoneal glucose challenge (NC�
11.8�2.4, HI�5.8�0.1 g·min/dl, n�4/group, P	0.05;
Fig. 1I). AMPK-DN mice, by contrast, showed no aug-
mentation of glucose uptake after 8 wk of HI diet
(NC�12.4�2.2, HI�12.2�1.7 g·min/dl, n�3– 4/
group, P�0.95; Fig. 1I). The same pattern was seen with
total AUCG as with incremental AUCG, namely a statis-
tically significant decrease in AUCG in WT mice fed the
HI diet but no difference in the AMPK-DN mice (not
shown).

AMPK is activated by iron in liver

We also examined AMPK activity in liver. We first con-
firmed that liver in mice fed the HI diet was iron over-
loaded. Ferritin was elevated by 3.8-fold in liver from mice
fed the HI diet compared to mice fed the NC diet
(NC�20.7�1.0, HI�5.4�1.7 arbitrary density units,
n�3–4/group, P	0.001; Fig. 2A). The phosphorylated
form of AMPK was increased 1.9-fold (NC�0.42�0.03,
HI�0.83�0.11 arbitrary density units, n�3–4/group,
P	0.05) and ACC was increased 2.0-fold (NC�
0.22�0.06, HI�0.43�0.08 arbitrary density units,
n�3–4 /group, P�0.11) in liver from mice fed the HI
diet (Fig. 2B).

Decreased hepatic glucose output in liver of mice fed
an HI diet despite decreased insulin signaling

Because AMPK is known to suppress hepatic gluconeo-
genesis, we examined gluconeogenesis-related gene

expression in liver by quantitative RT-PCR. G6Pase
mRNA was decreased by 70% (P	0.05; Fig. 2C), and
Pepck mRNA level was decreased by 25% although not
significantly (P�0.14, data not shown). We further
confirmed decreased gluconeogenesis by performing
pyruvate tolerance testing. Mice fed the HI diet exhib-
ited a 14% decrease in AUCG after intraperitoneal
pyruvate challenge (P	0.05; Fig. 2D).

We next examined hepatic glucose metabolism using
stable isotope-based dynamic metabolic profiling (SiDMAP)
tracer studies. Intraperitoneal glucose tolerance testing
was performed using [U-13C6]-d-glucose. Consistent
with the data above, mice fed the HI diet exhibited a
13% decrease in hepatic glucose output compared with
mice fed the NC diet (P�0.05; Table 1) and a 15.8%
decrease compared with mice fed the LI diet (P	0.05;
Table 1). Because intracellular lactate is one of the
precursors contributing to hepatic glucose output, we
examined the glucose-derived lactate fraction in liver.
Mice fed the HI diet trended toward a decrease in hepatic
lactate compared with mice fed the NC diet (18%,
P�0.12; Table 1) and exhibited a 28.4% decrease com-
pared with mice fed the LI diet (P	0.05; Table 1).
Glucose-derived plasma lactate, the source of glucose
production via Cori cycling, was 9.2% lower in mice fed
the HI diet compared with mice fed the NC diet (P	0.01;
Table 1) and 13.5% lower compared with mice fed the LI
diet (P	0.001; Table 1). Liver lactate from glycolysis in
mice fed the HI diet was 3.5% lower compared with mice
fed the NC diet P	0.01; Table 1) and 3.4% lower com-
pared with mice fed the LI diet (P	0.01; Table 1).
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To determine whether the decreased hepatic glucose
production was mediated by augmented insulin action,
insulin signaling in liver was examined by Western
blotting. Phosphorylation of AKT and IRS2 were lower
by 68 and 72%, respectively, in liver of mice fed the HI
diet (pAKT: NC� 8.7�1.0, HI�2.7�0.4 arbitrary den-
sity units, n�3/group, P�0.01; IRS2: NC�16.3�0.2,
HI�4.6�1.1 arbitrary density units, n�3–4/group,
P	0.05; Fig. 2E).

Mechanism for activation of AMPK in skeletal muscle
and liver of mice fed an HI diet

We next examined the mechanisms by which iron
activated AMPK. Because the phosphorylated form and
activity of AMPK are regulated by LKB1, which in turn
is regulated by acetylation (22, 23), we measured LKB1
acetylation in liver and skeletal muscle. LKB1 acetyla-
tion was decreased by 53% in skeletal muscle
(NC�15.5�0.8, HI�7.2�0.3 arbitrary density units,
P	0.001; Fig. 3A) and by 36% in liver of mice fed the HI
diet (NC�1.48�0.03, HI�0.95�0.09 arbitrary density units,
n�3/group, P	0.01; Fig. 3B). We also directly assessed
lysine deacetylase activity in muscle and liver. Deacetylase
activity in tissues of mice fed the HI diet was increased
2.0-fold in skeletal muscle (P	0.02) and 1.6-fold (P	0.05) in
liver (Fig. 3C). We also assessed SIRT1 activity directly by
assessing the acetylation of p53 at Lys382 (24). Acetylation of
p53 was decreased in muscle tissue of mice fed the HI diet
(P	0.01; Fig. 3D). Because deacetylation of p53 results in its
degradation (25), we also assessed total p53, and its levels,
too, were decreased in HI (P	0.005; Fig. 3D). Treatment
with the sirtuin inhibitors nicotinamide or splitomicin abol-
ished the increased phosphorylation of AMPK induced by
iron treatment of C2C12 cells (Fig. 3E).

Because an increased AMP/ATP ratio is also known
to increase AMPK activity, we measured AMP and ATP
levels in skeletal muscle and liver. The AMP/ATP ratio
was increased by 2.7-fold in skeletal muscle (P	0.05;
Fig. 3F) and by 2.0-fold in liver (P	0.05; Fig. 3F) of
mice fed the HI diet.

Iron overload may result in increased oxidative stress,
which in turn regulates SIRT1 activity (26). We there-
fore determined whether oxidative stress was enhanced
in skeletal muscle with dietary iron overload. Protein
carbonyl levels, a commonly used indicator of protein
oxidation (27) were increased by 2-fold (P	0.01; Fig. 4A)
and 5.4-fold (P	0.05; Fig. 4A) in skeletal muscle and

liver, respectively, of mice fed the HI diet. We next
determined whether increased oxidative stress medi-
ated iron-induced AMPK activation and also improved
glucose tolerance. Similar to the study depicted in Fig.
1H, mice fed the HI diet for 8 wk exhibited a 48%
decrease in the incremental AUCG after intraperitoneal
glucose challenge compared to mice fed the NC diet
(P	0.001; Fig. 4B). After concomitant treatment for 8
wk with the antioxidant N-acetyl cysteine (NAC), how-
ever, no difference was observed in AUCG between
mice fed the NC and HI diets (P�0.36). Both groups of
NAC-treated mice had significantly lower incremental AUCG
than control mice fed the NC diet (P	0.01), but this was
largely the effect of significantly higher fasting glucose levels
in the NAC-treated animals (NAC�151�5, control�127�6
mg/dl, P	0.01; data not shown) rather than decreased
glucose excursions. Thus, the total AUCG did not differ
between control and NAC-treated mice (P�0.52; data
not shown). The increased protein carbonyl level in
muscle and liver of mice fed the HI diet was also
normalized after 8 wk of NAC treatment (P�0.49 and
P�0.57 for NC vs. HI in muscle and liver, respectively;
Fig. 4C), as was the increased phosphorylation of AMPK
(P�0.61 and P�0.78; Fig. 4D).

DISCUSSION

Our previous studies in a mouse model of HH have
shown that iron-overloaded Hfe�/� mice exhibit ele-
vated AMPK activity in skeletal muscle (11), although it
was not determined whether the AMPK activation was
induced by iron or other secondary iron-independent
signaling pathways. The mechanism of the activation of
AMPK by iron and the subsequent changes in glucose
homeostasis were also unknown, as was the status of
insulin signaling. We report here that high dietary iron
in WT mice activates AMPK in liver and muscle. This
stimulation is mediated by redox signaling and de-
creased LKB1 acetylation, thus increasing LKB1 activity
to phosphorylate and activate AMPK. Activated AMPK
overruns dampened insulin signaling, increasing glu-
cose uptake in muscle and suppressing gluconeogene-
sis in liver, contributing to the improved glucose toler-
ance observed in mice fed an HI diet. That AMPK is
largely responsible is demonstrated by the lack of the
effects of iron in muscle of mice expressing AMPK-DN
in that tissue.

TABLE 1. Metabolic fate of glucose in a 13C isotoplome-wide association study (IWAS) matrix

Treatment MHI NC LI

Hepatic glucose output, glucose-derived/z242 13C-labeled fraction 45.13 � 5.81 51.85 � 3.28* 53.58 � 2.8*
Hepatic lactate level, glucose-derived 13C-labeled lactate 6.69 � 0.67 8.12 � 1.99# 9.34 � 2.00*
Plasma lactate, glucose-derived 13C-labeled lactate 19.07 � 1.39 21 � 1.15** 22.05 � 1.97***
Liver lactate from glycolysis, glucose-derived M3 13C-lactate 78.86 � 0.53 81.77 � 2.15** 81.64 � 1.33***

Metabolic fate of glucose after intraperitoneal challenge with [U-13C6]d-glucose substrate by its cross-labeling of plasma and liver metabolic
products according to IWAS in WT C57BL/6J mice fed NC diet (500 mg Fe/kg), MHI diet (2 g Fe/kg), and LI diet (35 mg Fe/kg); n � 3/group.
*P � 0.05, **P 	 0.01, ***P 	 0.001 vs. HI diet; #P � 0.12 vs. HI diet (not significant).
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Iron entry into cells and bioavailable iron levels
within cells are tightly regulated (28), so it was first
necessary to determine whether skeletal muscle does
accumulate excess iron with increased dietary intake, as
has been previously demonstrated with HH (3, 11).
Iron loading in muscle was demonstrated by 3 indepen-
dent methods: increased ferritin protein levels, indicat-
ing increased iron stores in cells; decreased transferrin
receptor levels, indicating higher levels of bioavailable
iron flux; and increased total nonheme iron levels.
These data demonstrate conclusively that despite the
multiple pathways for regulation of iron and negative
feedback regulation of dietary iron absorption medi-
ated by hepcidin (28), those systems are not sufficient
to prevent overload in muscle with chronic dietary
excess of iron.

Numerous studies have demonstrated that in both
humans and mouse models, iron overload is associated

with diabetes and other markers of metabolic syndrome,
such as steatohepatitis (1–5, 11, 29). The current study
demonstrates that iron inhibits insulin signaling in muscle
and liver, but also exerts compensatory beneficial meta-
bolic effects by up-regulating AMPK activity. These effects
were seen after feeding mice excess iron for only 2 mo,
and with 2- to 4-fold elevations of ferritin and iron levels
in muscle and liver. The majority of these studies were
performed in mice fed a diet containing 20 g/kg
elemental iron, but similar effects were seen in mice fed
1/10 that amount, only 4-fold more than normal ro-
dent chow. “Normal” human serum ferritin values vary
over a 10- to 15-fold range, suggesting that the current
results are applicable to individuals with modest de-
grees of excess iron, such as can be seen with dietary
excess. Of note, the effects of high iron on hepatic
glucose handling are not attributable to overt liver
damage: Mice fed these diets did not develop hepato-
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toxicity, as evidenced by increased serum levels of
transaminases (data not shown), and it is also known
that the Hfe�/� mouse model is resistant to the hepa-
tofibrotic complications of iron overload that are seen
in humans (30).

Although the observed effects of iron were to
decrease glycemia in mice, over time other effects of
excess iron are diabetogenic, for example, decreased
insulin secretion, metabolic inflexibility, and mito-
chondrial dysfunction (10). These effects of iron
overload in the development of diabetes would be
particularly detrimental when combined with condi-
tions causing insulin resistance, such as obesity or a
high fat-diet. Finally, it is possible that the balance of
the competing effects of AMPK activation compared
to decreased insulin signaling may be different in
humans or change over time. Thus, the final inte-
grated effects of iron on diabetes risk are likely to be

complex and modified by species, age, weight, diet,
and multiple other variables.

The current studies were undertaken because of
significant differences between dietary iron overload
and HH, for example, in the tissue distribution of iron
overload in the two conditions. Iron overload occurs in
liver and muscle tissues both of Hfe�/� mice and of
mice fed HI diets. Iron levels in adipose tissue (17) and
macrophages (16) of Hfe�/� mice, by contrast, are
lower than in WT mice, based on the fact that the lower
hepcidin levels in HH result in increased expression of
the iron export channel ferroportin (31, 32). Thus,
tissues with relatively high ferroportin expression are
paradoxically iron underloaded in HH, whereas high
hepcidin in dietary iron overload lead to increased iron
levels in those same tissues. In addition, in contrast to
the decreased insulin signaling in liver of WT mice fed
an HI diet, insulin signaling in liver of Hfe�/� mice was
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enhanced (3). This may be related to increased adi-
ponectin levels in the Hfe�/� mice but decreased levels
with dietary iron excess, related to the different adi-
pocyte iron levels in the two conditions (17). In addi-
tion, macrophage iron loading on HI diets could
contribute to macrophage inflammation that could, in
turn, impair insulin signaling (33).

We demonstrate that one of the mechanisms of
AMPK activation by iron is through the deacetylation
of LKB1, one of the upstream stimulating kinases of
AMPK. Deacetylation of LKB1 is largely mediated by
SIRT1 (22, 23), and the decreased acetylation of the
SIRT1 target p53 (24) argues that activation of SIRT1 is
contributing to the observed effects. Consistent with a
role of SIRT1 in responding to iron and activating
AMPK, activation of SIRT1 attenuates oxidant-induced
pathways (34) and mimics a low-energy state to signal
increased fatty acid oxidation, a pathway also stimu-
lated by AMPK (35). Other sirtuins, however, also
modulate the LKB1/AMPK pathway (36), so we cannot
be sure that other deacetylases do not contribute to the
effects of iron on LKB1 acetylation. The pharmacologic
effects of nicotinamide and splitomicin observed in the
C2C12 cells argue that if other deacetylases are in-
volved, they are likely to be other sirtuin family mem-
bers rather than a non-NAD-dependent deacetylase.
AMPK in yeast is itself activated by decreased acetyla-
tion (37), arguing that direct modulation of AMPK
might add to LKB1-mediated changes in dietary iron
overload. Other potential consequences of sirtuin acti-
vation by iron are possible and remain to be deter-
mined.

The sirtuins are known to respond to oxidative stress,
and the experiments on the NAC-treated mice support
that signaling by redox state of the tissue is playing a
role in mediating the observed effects. Oxidant stress is
known to increase in iron overload (10, 38). It should
also be noted that factors other than enhanced skeletal
muscle glucose uptake are contributing to the pheno-
type of the NAC-treated mice. Fasting glucose levels, for
example, are significantly higher, and it may be specu-
lated that diminished redox-dependent signaling of
AMPK and its suppression of hepatic glucose produc-
tion (Table 1) is a factor.

In summary, the current results and previous stud-
ies demonstrate that iron exerts significant effects
across several tissues to exert effects on glucose
homeostasis and diabetes risk. This system-wide asso-
ciation study (SWAS) greatly assists in the ultimate
description of the effects of iron on metabolism,
which include a complex set of dose-sensitive effects
across several tissues, reflecting both beneficial and
detrimental effects and both its toxic potential and
regulatory actions.
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